Novel assays to study drug effects in hiPSC-derived cells using the FDSS/µCell system

12th FDSS Users Meeting
June 9th, 2016

Marijn Vlaming, PhD
VP Technology
marijn.vlaming@pluriomics.com
Outline – new assays

• Electric Field Stimulation (EFS) /pacing in hiPSC-derived cardiomyocytes
• Voltage Sensitive Dyes in hiPSC-derived cardiomyocytes
• Ca^{2+}-transient assays in hiPSC-derived smooth muscle cells
ELECTRIC FIELD STIMULATION (EFS)
Pacing cardiomyocytes

- Objectives for pacing:
 - Standardization of electrophysiology assays
 - Better predictivity of compound safety (or efficacy)
 - Increased biological relevance: adjusting beat rates along large physiologically relevant range
 - Investigation of beat rate–dependent compound effects

Pluricyte® Cardiomyocytes paced at 0.8 Hz, 1000 mV, CardioECR system
Pacing hiPSC-derived Cardiomyocytes

Advantages
- More standardized
- Physiologically relevant beat rates
- Beat-rate dependent compounds
- Compounds effects isolated from beat rate
- Compatible with mature cells (no spontaneous beating)

Disadvantage
- Pacing & readout both electrical → pacing artefacts

EFS: electrical stimulation with optical readout
Pacing Pluricyte® Cardiomyocytes with EFS

- **spontaneous**
- **pacing 0.5 Hz**
- **spontaneous**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>0.5</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>5</td>
</tr>
<tr>
<td>Pulse width (ms)</td>
<td>10</td>
</tr>
<tr>
<td>Dispense Height (mm)</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Compound effects/standardization of assays: Ryanodine (RyR2 blocker, negative inotrope) reduces calcium transient amplitude and increases peak width.

Data show that Pluricyte® CMs has a functional SR that plays an important role in E-C coupling.
Pacing using EFS – preliminary conclusions

- EFS provides useful option to separate electrical pacing from assay read outs
- EFS can help to standardize high throughput assays in hiPSC-derived cardiomyocytes
- Pacing Pluricyte® Cardiomyocytes with EFS at beat rates up to 0.5 Hz, higher frequencies and other pacing conditions to be tested/optimized
- Further studies to investigate compound effects to be performed
VOLTAGE SENSITIVE DYSES TO STUDY PLURICYTE® CARDIOMYOCYTE ELECTROPHYSIOLOGY USING THE FDSS SYSTEM
Membrane potential of Pluricyte®
Cardiomyocytes

Voltage sensitive dye FluoVolt to study changes of the Membrane Potential

Next step: testing compound effects with voltage sensitive dyes
Ca^{2+} flux assays with FDSS/μCell to study compound effects in hiPSC-derived smooth muscle cells
Pluriomics manufactures iPSC derived functional cell types and offers cell-based assay services.

- Smooth muscle cells
- Cardiomyocytes
- Endothelial cells

Assay development
- Electrophysiology
- Biochemistry
- Contraction

Drug development
Pharmacological research
Ca$^{2+}$ analysis of SMCs treated with GPCR agonists

Endothelin-1

- 20 nM ET-1
- 2 nM ET-1
- 0.2 nM ET-1
- 0.02 nM ET-1
- Control

Angiotensin-II

- 100 µM AT-II
- 10 µM AT-II
- 1 µM AT-II
- 100 nM AT-II
- 10 nM AT-II
- 1 nM AT-II
- 0.1 nM AT-II
- Control

Graphs

- **Endothelin-1** intensity over time (s)
- **Angiotensin-II** intensity over time (s)

Concentration (µM)

- ET-1
- AT-II
- Control

Amplitude (au)
Summary

- Besides “existing” Ca\(^{2+}\)-flux assays with Pluricyte® Cardiomyocytes in the Hamamatsu FDSS/\(\mu\)Cell system, new assays will provide further opportunities for development and application of high-throughput multiparametric assays to study safety and efficacy of cardioactive compounds.
- The assays developed for cardiomyocytes, can also be used for other cell types, such as smooth muscle cells.
- Combining Pluricyte® iPSC-derived cells with the FDSS/\(\mu\)Cell system contributes to:
 - More efficient, and therefore cost- and time-effective, decision making in early drug discovery & development
 - Reduction of animal experiments
Acknowledgements

Hamamatsu Photonics
Jean Marc D’Angelo
Emmanuel Pirson
Thomas Niedereichholz

Pluriomics BV
Peter Nacken
Fleur Stevenhagen
Rene Wilbers
Tessa de Korte
Arie Reijerkerk
Stefan Braam

Part of this work was performed within the CRACK-IT project InPulse, sponsored by NC3Rs and GlaxoSmithKline.

CONTACT:
support@pluriomics.com
www.pluriomics.com